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Abstract—Brain-inspired Hyperdimensional (HD) computing
is a promising solution for energy-efficient classification. HD
emulates cognition tasks by exploiting long-size vectors instead of
working with numeric values used in contemporary processors.
However, the existing HD computing algorithms have lack of
controllability on the training iterations which often results in
slow training or divergence. In this work, we propose AdaptHD,
an adaptive learning approach based on HD computing to ad-
dress the HD training issues. AdaptHD introduces the definition
of learning rate in HD computing and proposes two approaches
for adaptive training: iteration-dependent and data-dependent. In
the iteration-dependent approach, AdaptHD uses a large learning
rate to speedup the training procedure in the first iterations, and
then adaptively reduces the learning rate depending on the slope
of the error rate. In the data-dependent approach, AdaptHD
changes the learning rate for each data point depending on how
far off the data was misclassified. Our evaluations on a wide range
of classification applications show that AdaptHD achieves 6.9×
speedup and 6.3× energy efficiency improvement during training
as compared to the state-of-the-art HD computing algorithm.

I. INTRODUCTION

Hyperdimensional (HD) computing is a brain-inspired computa-
tional approach which can go a long way in addressing the energy
bounds that plague deterministic computing [1]. HD computing
is based on the understanding that brains compute with patterns
of neural activity that are not readily associated with numbers.
In fact, the brain’s ability to calculate with numbers is feeble.
However, we can model neural activity patterns with points in a
high-dimensional space. When the dimensionality is in the thou-
sands (e.g., D = 10,000), it is called hyperdimensional. Operations
on hypervectors can be combined into interesting computational
behaviors with unique features that make them robust and efficient.
HD has been used in different domains, including analogy-based
reasoning[2], language recognition[3], [4], prediction from mul-
timodal sensor fusion[5], [6], speech recognition [7], and brain-
computer interfaces[8]. HD computing supports single-pass train-
ing, where the training can happen by only going once through
a training data [4]. However, in this work, we argue that HD
using single-pass training provides significantly low accuracy on
practical classification problems, e.g., speech recognition and face
detection. For example, for face detection application [9], single-
pass learning provides 40% lower classification accuracy than the
model which has been retrained. One efficient way to improve the
HD classification accuracy is performing perceptron-like iterative
training. However, without a clear definition of learning rate the
retraining process often diverge or may take long time to con-
verge. This makes the HD computing less desirable, as low-cost
training is essential for embedded devices with limited battery and
resources.

In this paper, we propose AdaptHD, a novel adaptive retraining
method for HD computing. For the first time, AdaptHD introduces
the definition of learning rate in HD computing and retrains a
model using two adaptive approaches: iteration-dependent and
data-dependent. In the iteration-dependent approach, AdaptHD
changes the learning rate based on the changes in the classification
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Fig. 1. Overview of a AdaptHD classification model.
accuracy during retraining. In the first iterations, this approach
uses a large learning rate to speedup the training procedure, and
then adaptively reduces the learning rate depending on the slope of
the error rate. A second approach is a data-dependent approach,
where AdaptHD changes the learning rate for each data point,
depending on how far off the data was misclassified. Finally,
AdaptHD proposes a hybrid approach which updates the learning
rate considering both iteration and data dependency. We have
evaluated the efficiency of AdaptHD on a wide range of classi-
fication applications. Our evaluation shows that AdaptHD using
iteration-dependent (data-dependent) approach can achieve 6.9×
speedup and 6.3× energy efficiency improvement during training
as compared to the state-of-the-art HD computing algorithm.

II. ADAPTHD FRAMEWORK

A. HD Classification
In this section, we propose AdaptHD, an adaptive training

framework for high-efficient and high-accurate Hyperdimensional
computing. Figure 1 shows an overview of the AdaptHD per-
forming the classification task. In AdaptHD, the encoder block
maps input data into high-dimensional vectors, e.g., D = 10, 000
dimensions, and combines them in order to generate a hypervector
representing each class. During inference, the classifier performs
the classification task by looking at the similarity of the input hy-
pervector to each of the stored class hypervectors. In the following,
we explain the functionality of each module.

Encoding: In HD computing, the first step is to map/encode
all data points from original to a hypervector(•A ). Here, we con-
sider a general encoding approach which maps a feature vector
F = {f1, f2, . . . , fn}, with n features (fi ∈ N ) to high-
dimensional vector Q = {q1, q2, . . . , qD} with D dimensions
(qi ∈ {0, 1}D) [1], [7]. This encoding finds the minimum and
maximum feature values and quantizes that range into m levels.
Then, it assigns a random binary hypervector with D dimensions to
each of the quantized level {L1, . . . , Lm}. To preserve the feature
position, the encoding module assigns a random binary hypervec-
tor to each feature index, {ID1, . . . , IDn}, where ID ∈ {0, 1}D .
The encoding can happen by linearly combining the feature values
over different indices, where the hypervectors corresponding to
the feature indices preserve the position of each feature value in
a combined set:

H = ID1 ⊕ L1 + ID2 ⊕ L2 + . . . + IDn ⊕ Ln.
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Fig. 2. HD classification accuracy using low and high learning rates.

where H is the (non-binary) encoded hypervector, ⊕ denotes the
XOR operation, and Li is the (binary) hypervector corresponding
to the i-th feature of vector F . AdaptHD binarizes this hypervector
by comparing each dimension of H with a threshold value, which
is half of the number of features (THR = n/2).

Training: The encoded hypervectors are combined in a
AdaptHD training module in order to create a single hypervec-
tor representing each class [4]. This combination is a simple
addition of all encoded data points belong to a particular class.
Then, the class hypervectors are binarized. For an application
with k classes, AdaptHD results in generating k class hypervec-
tors, {C1, C2, . . . , Ck} where Ci ∈ {0, 1}D . This training can
happen by a single time passing through a training dataset (•B ).
This single-pass model provides good classification accuracy in a
short amount of training time, but in practical applications, this
accuracy is significantly lower than state-of-the-art (as explained
in Section I).

Inference: In order to classify the input data, AdaptHD uses the
same encoding module to map a test data into a high-dimensional
vector, called query hypervector. AdaptHD calculates the Ham-
ming distance similarity of each class hypervector with a query
hypervector. Finally, a data point is assigned to a class which it has
the highest similarity with it.

B. AdaptHD Learning Rate
To improve the HD model, we use a retraining approach

which adjusts the class hypervectors by iterating over the training
dataset (•C ). After the initial training, AdaptHD saves a non-
binary training model, Ci ∈ ND . AdaptHD starts retraining by
iteratively checking the similarity of each training data point with
all class hypervector. Since the class hypervectors are non-binary,
this similarity check happens using cosine metric. Our exportation
is that all training data points should be correctly classified by
the model. In case of a correct classification, we do not make
any changes on the model. However, if Qi is misclassified, we
subtract Qi from the incorrect class and add it to a class that it
should have been matched with it (the label of the Qi data). For
the first time, AdaptHD introduces the definition of learning rate in
HD computing. Learning rate, α, specifies the amount of changes
that we make into a model during each retraining iteration. For
example, for each misclassified data during retraining iteration,
AdaptHD updates correct and incorrect class hypervectors using:
Cwrong = Cwrong − αQi and Ccorrect = Ccorrect + αQi.
This process continues iteratively through training dataset until
the algorithm converges (•D ). The convergence defines as a time
that the HD classification accuracy in the last three iterations
changes less than 0.1%. After the convergence, AdaptHD binarizes
the retrained model in order to enable the inference task to be
performed using as efficient Hamming distance similarity check.

Figure 2 shows the impact of using different learning rates on
the accuracy of speech recognition application [10]. Our evaluation
shows that using a small learning rate, e.g., α = 2, HD requires
many retraining iterations to get near the best accuracy. Lower
learning rates are better for fine-tuning the model towards the
end because the accuracy does not fluctuate as much. On the
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Fig. 3. AdaptHD framework supporting iteration-dependent training.

other hand, with higher learning rates, we can get near the best
accuracy faster. Higher learning rates are not suitable for fine-
tuning the model once we are near the best accuracy. In fact, large
learning rate results in the accuracy fluctuation which increases the
possibility of divergence (as depicted in Figure 2). Often time HD
using high learning rates do not achieve as high of an accuracy as
lower learning rates. This is also due to the fact the lower learning
rates are better at fine-tuning the HD model once it is near the best
accuracy it can achieve.

When adaptively changing α, we want to take advantage of
higher learning rates (α >>) to get near the best accuracy faster.
Once we are near the best accuracy, we want to take advantage of
lower learning (α <<) rates to fine-tune the model. In this work,
AdaptHD goal is to get the advantage of both small and larger
learning rates in order to provide high classification accuracy as
well as fast training. The black line in Figure 2 shows the AdaptHD
classification accuracy when using the adaptive learning rate. This
approach uses a large learning rate in the first iterations of training
in order to accelerate the training process but eventually reduces
the learning rate in order to converge.

C. AdaptHD Iterative Training
AdaptHD proposes two methods for adaptive retraining:

iteration-dependent and data-dependent. In the following, we ex-
plain the details of each approach.

AdaptHD Iteration-Dependent Learning: The iteration de-
pendent approach increases the learning rate (α) adaptively during
the retraining iterating. AdaptHD starts the training with a large
learning rate, αmax, in order to speedup the training. Then, it
reduces the learning rate depending on the changes in the classi-
fication accuracy. AdaptHD exploits the error rates (percentages of
wrong classifications) of the last β iterations in order to decide the
learning rate on the next iteration. Where there is larger the error
rates on the last β iterations, AdaptHD selects a larger learning
rate in order to faster adjust the model. As the changes in the error
rate decreases, the accuracy gets closer to converging, so AdaptHD
uses lower learning rates.

Figure 3 shows the overview of the AdaptHD using iteration-
dependent adaptive learning framework. After initial training, the
HD model is retrained iteratively on every training data points.
If the HD model misclassifies a training data, the HD model is
updated by adding and subtracting αQ from two hypervectors in
the model. Once the HD model has been retrained on the entire
training set, the previous error rates are sent to the Learning Rate
Decider LRDecider to set α for the next iteration. Figure 3 also
shows how the LRDecider sets the α value on the next iterations.
Based on the data distribution of error rates, AdaptHD uses a linear
function to determine α value. To avoid floating point operations,
we use a step function to set the learning rate depending on the
average error rate. As the error rate decreases, α also decreases.
This is because as the accuracy of our HD model gets closer
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Fig. 5. AdaptHD framework supporting data-dependent training.

to converging, the error rate will decrease. Thus, α should be
decreased to help the model converge faster.

AdaptHD Data-Dependent Learning: Unlike the iteration
depended approach which uses the same learning rate for all data
points, data-dependent approach adaptively modifies the learning
rate for each sample data. The goal of this approach is to make
higher changes to the model if a data point is misclassified with a
far distance. Figure 4 shows the histogram of the cosine similarity
difference in speech recognition application [10] during a single
retraining iteration. Our evaluation shows that most of the data
points have small cosine similarity difference. Meanwhile, there
are some outliers (highlighted in the figure) that have much larger
similarities differences. Since the model is further off from these
training hypervectors, the HD model should be adjusted more
aggressively to address that. To this end, AdaptHD uses a large
learning rate for data points which are misclassified with the HD
model with a far distance, while using smaller learning rates for
marginal misclassifications. AdaptHD uses the difference of the
cosine similarity of a query with the correct class, Ccorrect, and
misclassified class, Cwrong , as a similarity metric to identify how
far a misclassification occurs. When the difference between the
cosine similarities is larger, we need to adjust both class hyper-
evectors more to achieve this goal. When the difference is smaller,
the model adjustment can happen with smaller learning rate.

Figure 5 shows the overview of AdaptHD framework using data-
dependent learning. First, AdaptHD checks the similarity of each
training data point with the current HD model. If a data point is
misclassified, the difference of cosine similarities of a correct and
incorrect class, Δδ = δ(Q,Cwrong)−δ(Q,Ccorrect), is sent to the
LRDecider, where δ(∗) denotes cosine similarity. The LRDecider
uses this similarity difference to decide what α should be for that
data point. The HD model is then updated with the data point, Q,
multiplied by α. Once the HD model has been updated, AdaptHD
sends a next data point to check the quality of the model. Figure 5
shows how the LRDecider block determines the learning rate for
each data point. As shown, α is determined with a linear function
based on the similarity difference. We use a step function to set
the learning rate depending on the similarity difference. As the
similarity difference increases, α also increases in order to make
a larger modification on the current model.
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Fig. 6. Number of required training iterations of the baseline HD and
AdaptHD using iteration-dependent and data-dependent approaches.

III. EVALUATION

A. Experimental Setup
We describe the functionality of the proposed AdaptHD using

C++ implementation. We run AdaptHD on an embedded device
(Raspberry Pi 3) using ARM Cortex A53 CPU. For the mea-
surement of CPU power, we use a Hioki 3334 power meter. All
experiments are performed for a case of using D = 10, 000 di-
mensions. We evaluate the efficiency of the proposed AdaptHD on
four practical classification problems: Speech Recognition (ISO-
LET) [10], Activity Recognition (UCIHAR) [11], Face Recogni-
tion (FACE) [9], and Cardiotocography (CARDIO) [12].

B. AdaptHD & Maximum Learning Rate
Training Iterations: There is an optimal αmax that the LRDe-

cider function should saturate at. This is because if the function
saturates at too low of an αmax, retraining may still take many
iterations. In this case, our method is closer to having a low
constant learning rate as discussed in Section II-B. However, if
αmax is large, we may run into the same problem of having a large
learning rate. This fluctuates the accuracy of the HD model and
result in a low accuracy or divergence.

We explored different values of αmax to find the optimal
value. Figure 6 shows the effect of increasing αmax for iteration-
dependent learning. As we predicted, a small αmax of 2 does not
significantly reduce the number of training iterations. Additionally,
AdaptHD using a large αmax of 20 takes many iterations to
converge because the HD model is overadjusted. In some cases, the
HD model diverges because it is overadjusted, such as when αmax

is 20 for the ISOLET dataset. By looking at Table I, an αmax of 5
is the optimal value for the iteration-dependent approach. Figure 6
shows the impact of αmax on the number of retraining iterations of
data-dependent approach. Our results show that the optimal αmax

for the data-dependent approach is 15, which is slightly higher
than the optimal value of the iteration-dependent approach. In fact,
the data-dependent approach needs to make higher modification
on each individual data, while still keeping the learning rate of
marginally misclassified data small. However, iteration-dependent
needs to be more conservative since it uses the same learning rate
for all data points.

AdaptHD Accuracy: Table I shows the classification accuracy
of AdaptHD using different αmax. The results are reported for four
different cases: AdaptHD with iteration-based and data-dependent
learning rates, AdaptHD using fixed learning rate of αmax, and
the baseline HD (α = 1). In terms of accuracy, AdaptHD provides
higher accuracy using small αmax, e.g., 5 or 10. Using a very large
learning rate, the fluctuation in the accuracy eliminates AdaptHD
accuracy to converge into a stable value. Our evaluation shows



TABLE I
THE IMPACT OF THE MAXIMUM LEARNING RATE (αmax) ON THE ADAPTHD CLASSIFICATION ACCURACY.

Learning Rate αmax = 2 αmax = 5 αmax = 10 αmax = 15 αmax = 20
α = 1Iteration Data αmax Iteration Data αmax Iteration Data αmax Iteration Data αmax Iteration Data αmax

ISOLET 91.28 91.34 91.66 91.34 91.89 90.21 91.85 90.83 89.05 92.24 91.15 88.17 90.89 90.13 N/A 91.10
UCIHAR 93.44 94.63 93.96 96.20 94.40 93.9 95.62 94.41 93.65 94.66 94.34 92.12 94.34 92.66 NA 93.82

FACE 94.35 94.69 94.91 95.97 95.83 95.81 95.75 95.87 95.03 95.15 95.03 94.11 94.23 95.71 93.2 94.38
CARDIO 99.88 98.34 98.56 99.90 99.53 99.30 100 98.59 99.21 100 98.12 98.12 99.06 98.59 97.84 98.17
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Fig. 7. Classification accuracy of the baseline HD and AdaptHD using
iteration and data-dependent approaches.

TABLE II
ACCURACY AND TRAINING EFFICIENCY OF ADAPTHD USING

SIMULTANEOUS USE OF ITERATION AND DATA-DEPENDENT APPROACH.
ISOLET UCIHAR FACE CARDIO

Iteration
Dependent

Energy Improv. 2.83× 3.93× 5.20× 4.92×
Speedup 3.08× 4.41× 5.71× 5.29×

Data
Dependent

Energy Improv. 6.28× 4.90× 7.63× 5.96×
Speedup 6.83× 5.33× 8.29× 6.51×

Hybrid
Energy Improv. 6.25× 5.61× 7.58× 5.94×

Speedup 6.78× 6.09× 8.24× 6.48×
Accuracy 92.4% 96.0% 95.9% 99.9%

that AdaptHD trained with iteration-dependent and data-dependent
approaches can achieve on average 2.0% and 1.2% higher classifi-
cation accuracy as compared to the baseline HD (with a fixed α of
1) in a significantly lower number of retraining iterations. Figure 7
visualizes the classification accuracy of AdaptHD using iterating-
dependent and data-dependent approaches for ISOLET and FACE
applications. Our evaluation shows that HD computing using a
fixed and small learning rate takes a very long time to converge.
However, AdaptHD exploits a large learning rate to accelerate the
first training iterations and a small learning rate for convergence.

C. Hybrid AdaptHD
Table II shows AdaptHD efficiency and accuracy exploiting both

iteration and data-dependent approaches. Before each retraining
iteration, AdaptHD first sets the learning rate using the iteration-
dependent approach. Then, it exploits the data-dependent approach
to find a learning rate for each individual data point in an iteration.
AdaptHD selects the average learning rate of the iteration and data-
dependent approach as a learning rate for each data point. The
results (on ARM Cortex A53 CPU) show that AdaptHD in hybrid
mode can achieve the high classification accuracy of iteration-
dependent and the fast training of data-dependent approach. For
example, AdaptHD using iteration-dependent (data-dependent) ap-
proach can achieve 4.6× and 4.2× (6.7× and 6.2×) speedup and
energy efficiency improvement during training as compared to the
baseline HD computing algorithm.

D. AdaptHD Comparison with Other Classifiers
Finally, we compare the efficiency and accuracy of AdaptHD

with other light-weight classification algorithms including SVM,
Random Forest, Naive Bayes, Gradient Boosting (GBoosting),
and Perceptron. We exploited Scikit-learn library [13] for the
model training and testing and used grid search to find the best
hyperparameters. Table III lists the classification accuracy and the
training/test execution time of all algorithms running on an em-
bedded device (Raspberry Pi 3) using ARM Cortex A53 CPU. Our
evaluation shows that AdaptHD can provide better or comparable
accuracy to other algorithms. For example, thanks to our non-linear
encoding, AdaptHD can provide about 4-5% higher accuracy than

TABLE III
ACCURACY, TRAINING AND TESTING EXECUTION TIME OF ADAPTHD

WITH OTHER LIGHT-WEIGHT ALGORITHMS.
Training Execution (s) Accuracy Inference

Execution (ms)ISOLET UCIHAR FACE CARDIO

SVM 4.82 2.81 0.53 0.03 95.69% 6.91
Random Forest 1.04 1.10 2.96 0.02 93.50% 5.66

Naive Bayes 0.21 0.78 0.50 0.06 87.92% 1.85
GBoosting 53.15 7.36 77.41 0.21 96.05% 4.38
Perceptron 1.05 1.89 1.21 0.06 91.78% 0.80

Iteration (AdaptHD) 1.36 1.40 0.73 0.01 96.15%
1.24Data (AdaptHD) 0.68 1.26 0.41 0.009 95.38%

Hybrid (AdaptHD) 0.66 1.16 0.40 0.008 96.05%

perceptron algorithm which performs iterative training on original
data. In terms of efficiency, AdaptHD can provide much faster
computation in both training and testing. This higher AdaptHD
efficiency comes from the following points: (i) AdaptHD starts
the retraining process from an initial model which significantly
reduces the number of required iterations. (ii) AdaptHD repre-
sents data points using a binary vectors which can process with
significantly higher efficiency as compared to non-binary vectors.
(iii) AdaptHD simplifies the inference task to Hamming distance
similarity check, which can be implemented with an order of mag-
nitude higher efficiency than dot product. Our evaluation shows
that AdaptHD can achieve 2.1× faster training and 5.5× testing as
compared to learning algorithms such as SVM.

IV. CONCLUSION

In this paper, we propose two adaptive HD retraining approaches
which enable retraining the HD model to be more efficient while
maintaining the same accuracy. AdaptHD changes the learning rate
to converge the accuracy faster. The iteration-dependent changes
the learning rate through the retraining iterations, while data-
dependent approach adaptively changes learning rate depending on
each data. Our evaluation shows that AdaptHD can achieve 6.9×
speedup and 6.3× energy efficiency improvement during training
as compared to the state-of-the-art HD computing algorithm.
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